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Abstract In this work we introduce a new predictor–corrector (PC) pair form
(SEPCM) for the numerical integration of second-order initial-value problems and a
new optimized eight-step symmetric predictor–corrector method with minimal phase-
lag and algebraic order ten is constructed. The new method is based on the multistep
symmetric method of Quinlan–Tremaine (Astron. J. 100(5):1694–1700, 1990), with
eight steps and eighth algebraic order and constructed to solve numerically the radial
time-independent Schrödinger equation during the resonance problem with the use of
the Woods-Saxon potential. It can also be used to integrate related IVPs with oscilla-
tory solutions such as orbital problems. We compare the new method to some recently
constructed optimized methods and other methods from the literature. We measure
the efficiency of the methods and conclude that the new optimized method is the most
efficient of all the compared methods and for all the problems solved.
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1 Introduction

We study the numerical integration of special second-order periodic initial-value prob-
lems of the form

d2 y(x)

dx2 = f (x, y), y(x0) = y0, y′(x0) = y′
0 (1)

with an oscillatory solutions (see [29]). These ordinary differential equations are of
second order in which the derivative y′ does not appear explicitly.

A well-known example of problems of form (1) is the one-dimensional Schrödinger
equation that has the form:

y′′(x) =
(

l(l + 1)

x2 + V (x)− E

)
y(x) (2)

where l(l+1)
x2 is the centrifugal potential, V (x) is the potential, E is the energy and

W (x) = l(l+1)
x2 + V (x) is the effective potential. It is valid that lim

x→∞V (x) = 0 and

therefore lim
x→∞W (x) = 0.

We consider E > 0 and divide [0,∞) into subintervals [ai , bi ] so that W (x) is a
constant with value

_
Wi . After this the problem (2) can be expressed by the approxi-

mation:

y′′
i = (

_
W − E) yi , (3)

whose solution is:

yi (x) = Ai exp
(√ _

W − E x
)

+ Bi exp
(
−

√ _
W − E x

)
,

Ai , Bi ∈ R.
(4)

Much research has been done the last decades on the construction of computationally
efficient and reliable algorithms for the numerical solution of the one-dimensional
Schrödinger equation and related problems (see for example [1–86]), which can be
divided in the following categories:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge-
Kutta and Runge-Kutta Nyström type have been obtained in [1–4].

– In [5–9] exponentially and trigonometrically fitted Runge-Kutta and Runge-Kutta
Nyström methods are constructed.
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– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [10–30].

– Symplectic integrators are investigated in [31–47].
– Exponentially and trigonometrically multistep methods have been produced in

[48–70].
– Nonlinear methods have been studied in [71] and [72]
– Review papers have been presented in [73–86]

2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

y′′ = f (x, y) (5)

multistep methods of the form

m∑
i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ) (6)

with m steps can be used over the equally spaced intervals {xi }m
i=0 ∈ [a, b] and

h = |xi+1 − xi |, i = 0(1)m − 1. If the method is symmetric then ai = am−i and
bi = bm−i i = 0(1)�m

2 �.
Method (6) is associated with the operator

L(x) =
m∑

i=0

ai u(x + ih)− h2
m∑

i=0

bi u
′′(x + ih) (7)

where u ∈ C2.

Definition 1 The multistep method (6) is called algebraic of order p if the associated
linear operator L vanishes for any linear combination of the linearly independent
functions 1, x, x2, . . . , x p+1.

If u(x) has continuous derivatives of sufficiently high order then

L(x) = C0u(x)+ C1u′(x)h + · · · + Cqu(q)(x)hq + · · · , (8)

The coefficients Cq are given

C0 =
m∑

i=0

ai

C1 =
m∑

i=0

i · ai

Cq = 1

q!
m∑

i=0

iq · ai − 1

(q − 2)!
m∑

i=0

iq−2 · bi , q = 2, 3 . . . . (9)
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The order p is the unique integer for which

C0 = · · · = C p+1 = 0, C p+2 �= 0. (10)

A method is said to be consistent if this order is at least 1, i.e., if

C0 = C1 = C2 = 0. (11)

In what follows we will assume that the method (6) is consistent.
When a symmetric 2k-step method, that is for i = −k(1)k, is applied to the scalar

test equation

y′′ = −ω2 y (12)

a difference equation of the form

k∑
i=1

Ai (v)(yn+i + yn−i )+ A0(v)yn = 0 (13)

is obtained, where v = ωh, h is the step length and A0(v), A1(v), . . . , Ak(v) are
polynomials of v.

The characteristic equation associated with (13) is

k∑
i=1

Ai (v)(s
i + s−i )+ A0(v) = 0 (14)

From Lambert and Watson [83] we have the following definitions:

Definition 2 A symmetric 2k-step method with characteristic equation given by (14)
is said to have an interval of periodicity (0, v2

0) if, for all v ∈ (0, v2
0), the roots

si , i = 1(1)2k of Eq. (14) satisfy:

s1 = eiθ(v), s2 = e−iθ(v), and |si | ≤ 1, i = 3(1)2k (15)

where θ(v) is a real function of v.

Definition 3 For any method corresponding to the characteristic equation(14) the
phase-lag is defined as the leading term in the expansion of

t = v − θ(v) (16)

Then if the quantity t = O(vq+1) as v → ∞, the order of phase-lag is q.
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Theorem 1 [75] The symmetric 2k-step method with characteristic equation given
by (14) has phase-lag order q and phase-lag constant c given by

− cvq+2 + O(vq+4) = 2
∑k

j=1 A j (v) cos( jv)+ A0(v)

2
∑k

j=1 j2 A j (v)
(17)

The formula proposed from the above theorem gives us a direct method to calculate
the phase-lag of any symmetric 2k-step method.

In our case, the symmetric 8-step method has phase-lag order q and phase-lag
constant c given by:

−cvq+2 + O(vq+4)

= 2A4(v) cos(4v)+ 2A3(v) cos(3v)+ 2A2(v) cos(2v)+ 2A1(v) cos(v)+ A0(v)

32A4(v)+ 18A3(v)+ 8A2(v)+ 2A1(v)

(18)

3 Construction of the new optimized predictor–corrector method

From the form (6) and without loss of generality we assume am = 1 and we can write

yn+m +
m−1∑
i=0

ai yn+i = h2
m∑

i=0

bi f (xn+i , yn+i ), (19)

finally we get

yn+m = −
m−1∑
i=0

ai yn+i + h2
m∑

i=0

bi f (xn+i , yn+i ) (20)

where |a0| + |b0| �= 0. If the method is symmetric then ai = am−i and bi = bm−i

i = 0(1)�m
2 �.

3.1 The implicit method phase-lag order infinity (phase-fitted)

From (20) for m = 8, we get the form of the symmetric implicit eight-step method:

y4 = − (y−4 + α3 (y3 + y−3)+ α2 (y2 + y−2)+ α1 (y1 + y−1)+ α0 y0)

+h2 (β4 ( f4+ f−4)+β3 ( f3+ f−3)+β2 ( f2+ f−2)+β1 ( f1+ f−1)+β0 f0) .

(21)

The characteristic equation (14) becomes

4∑
i=1

Ai (v)(s
i + s−i )+ A0(v) = 0 (22)
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where

Ai (v) = αi + v2 βi , i = 0(1)4, α4 = 1.

We take

α4 = 1, α3 = −2, α2 = 2, α1 = −1, α0 = 0, (23)

and we want the implicit method to have infinite order of phase-lag, that is the phase-
lag will be nullified using β4 coefficient. We satisfy as many algebraic equations as
possible, but we keep β4 free. After achieving 10th algebraic order, the coefficients
depend now on β4:

β0 = 70 β4 − 12629

3024
, β1 = −56 β4 + 20483

4032
, β2 = 28 β4 − 3937

2016
,

β3 = −8 β4 + 17671

12096
(24)

and the phase-lag becomes:

P L = 1

1260

A

B
, where

A = 24192 (cos (v))4 + 24192 (cos (v))4 v2β4 + 17671 (cos (v))3 v2

−96768 (cos (v))3 v2β4 − 24192 (cos (v))3 + 14152 (cos (v))2 v2β4

−12096 (cos (v))2 − 11811 (cos (v))2 v2 + 2109 cos (v) v2 + 15120 cos (v)

−96768 cos (v) v2β4 − 409v2 + 24192v2β4 − 3024 and

B = 12 + 25v2

so by satisfying P L = 0, we derive

β4 = − 1

24192

C

D
, where

C = 24192 (cos (v))4 +
(

17671 v2 − 24192
)
(cos (v))3

−
(

12096+11811v2
)
(cos (v))2 +

(
15120+2109 v2

)
cos (v)−409 v2−3024

D = v2 (cos(v)−1)4 (25)

where v = ω h, ω is the frequency and h is the step length. For small values of v the
above formulae are subject to heavy cancelations. In this case the following Taylor
series expansion must be used:
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β4 = 45767

725760
+ 58061

31933440
v2 + 2399921

261534873600
v4 − 602311

298896998400
v6

− 1067953

7904165068800
v8 − 29376529643

5109094217170944000
v10 − 3029692489

16057153253965824000
v12

− 89043304369

18801466719189073920000
v14 − 9809592400337

145184926005578028810240000
v16

+ 47323386203

30565247580121690275840000
v18, (26)

where v = ω h, ω is the frequency and h is the step length.
From (21), (23) and (24) an optimized symmetric eight-step implicit method with

infinite order of phase-lag (phase-fitted) obtained (see [70]):

y4 = −y−4 + 2(y3 + y−3)− 2(y2 + y−2)+ (y1 + y−1)

+h2
(
β4(v)( f4 + f−4)+

(
17671

12096
− 8β4(v)

)
( f3 + f−3)

+
(

28β4(v)− 3937

2016

)
( f2 + f−2)+

(
20483

4032
− 56β4(v)

)
( f1 + f−1)

+
(

70β4(v)− 12629

3024

)
f0

)
(27)

where yi = y(x + ih), fi = f (x + ih, y(x + ih)), i = −4(1)4,

β4(v)=
−24192(cos(v))4−(17671v2−24192)(cos(v))3+(12096+11811v2)(cos(v))2−(15120+2109v2) cos(v)+409v2+3024

24192 v2 (cos(v)−1)4
,

v = ω h, ω is the frequency and h is the step length.
For small values of v the following Taylor series expansions must be used:

β4(v) = 45767

725760
+ 58061

31933440
v2 + 2399921

261534873600
v4 − 602311

298896998400
v6

− 1067953

7904165068800
v8− 29376529643

5109094217170944000
v10− 3029692489

16057153253965824000
v12

− 89043304369

18801466719189073920000
v14 − 9809592400337

145184926005578028810240000
v16

+ 47323386203

30565247580121690275840000
v18,

where v = ω h, ω is the frequency and h is the step length.
The implicit symmetric multistep method (27) has an interval of periodicity (0, v2

0)

where v2
0 = 3.57524404.

The local truncation error of the above method is given by:

L .T .E . = − 58061

31933440
h12

(
y(12)

n + y(10)
n ω2

)
+ O(h14) (28)
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The above implicit symmetric multistep method, has eight steps 10th algebraic order
and infinite order of phase-lag (phase-fitted).

3.2 The explicit method

From the form (20) with m = 8 and b8 = 0 we get the form of the eight-step symmetric
explicit methods:

y4 = − (y−4 + a3 (y3 + y−3)+ a2 (y2 + y−2)+ a1 (y1 + y−1)+ a0 y0)

+h2 (b3 ( f3 + f−3)+ b2 ( f2 + f−2)+ b1 ( f1 + f−1)+ b0 f0) . (29)

The characteristic equation (14) becomes

4∑
i=1

Ai (v)(s
i + s−i )+ A0(v) = 0 (30)

where

Ai (v) = ai + v2 bi , i = 0(1)4, a4 = 1, b4 = 0.

From (27) with β4(v) = 0, the explicit symmetric method of Quinlan–Tremaine [78],
with eight steps and eighth algebraic order, obtained:

y4 = −
(

y−4 − 2(y3 + y−3)+ 2(y2 + y−2)− (y1 + y−1)
)

+h2
(17671

12096
( f3 + f−3)− 23622

12096
( f2 + f−2)+ 61449

12096
( f1 + f−1)− 50516

12096
f0

)
(31)

where yi = y(x + ih), fi = f (x + ih, y(x + ih)), i = −4(1)3.
(We see that: a3 = −2, a2 = 2, a1 = −1, a0 = 0, b3 = 17671

12096 , b2 =
− 23622

12096 = − 3937
2016 , b1 = 61449

12096 = 20483
4032 , b0 = − 50516

12096 = − 12629
3024 .)

This method has an interval of periodicity (0, v2
0)where v2

0 = 0.52, eighth algebraic
order and eighth order of phase-lag (see [28]).

The local truncation error of the above method is given by:

L .T .E . = 45767

725760
y(10)

n h10 + O(h12) (32)

3.3 The general m-step predictor–corrector pair form

From J.D. Lambert [87] we have that the general m-step predictor–corrector or PC
pair is:
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m∑
j=0

a∗
j yn+ j = h

m−1∑
j=0

b∗
j fn+ j

m∑
j=0

a j yn+ j = h
m∑

j=0
b j fn+ j

(33)

Let the predictor and corrector defined by (33) have orders p∗ and p respectively. The
order of a PC method depend on the gap between p∗ and p and on λ, the number of
times the corrector is called. If p∗ < p and λ =< p − p∗ − 1, the order of the PC
method is p∗ + λ(< p) [83].

We consider the pair of linear multistep methods:

m∑
i=0

ai yn+i = h2
m∑

i=0
bi f (xn+i , yn+i )

m∑
i=0

αi yn+i = h2
m∑

i=0
βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭

where |a0| + |b0| �= 0, |α0| + |β0(v)| �= 0, v = ω h, ω is the frequency and h is the
step length.
In this case the coefficients βi (v), of the second method, depend on v (where i =
0(1)m, v = ω h, ω is the frequency and h is the step length).

Without loss of generality we assume am = 1 and αm = 1 we can write

yn+m +
m−1∑
i=0

ai yn+i = h2
m∑

i=0
bi f (xn+i , yn+i )

yn+m +
m−1∑
i=0

αi yn+i = h2
(
βm(v) f (xn+m, yn+m)+

m−1∑
i=0

βi (v) f (xn+i , yn+i )
)

⎫⎪⎪⎬
⎪⎪⎭

and we have

yn+m = −
m−1∑
i=0

ai yn+i + h2
m∑

i=0
bi f (xn+i , yn+i )

yn+m = −
m−1∑
i=0

αi yn+i + h2βm(v) f (xn+m, yn+m)+ h2
m−1∑
i=0

βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭
(34)

From this pair, a new predictor–corrector (PC) pair form, is formally defined as follows:

y∗
n+m = −

m−1∑
i=0

ai yn+i + h2
m−1∑
i=0

bi f (xn+i , yn+i )

yn+m = −
m−1∑
i=0

αi yn+i + h2βm(v) f (xn+m, y∗
n+m)+ h2

m−1∑
i=0

βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭
(35)

where |a0| + |b0| �= 0, |α0| + |β0(v)| �= 0, v = ω h, ω is the frequency and h is the
step length.
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If the method is symmetric then ai = am−i , αi = αm−i , bi = bm−i and βi (v) =
βm−i (v), i = 0(1)�m

2 �.
From (35) for m = 8, we get the form of the symmetric predictor–corrector eight-

step method:

y∗
4 = − (y−4 + a3 (y3 + y−3)+ a2 (y2 + y−2)+ a1 (y1 + y−1)+ a0 y0)

+h2 (b3 ( f3 + f−3)+ b2 ( f2 + f−2)+ b1 ( f1 + f−1)+ b0 f0)

y4 = − (y−4 + α3 (y3 + y−3)+ α2 (y2 + y−2)+ α1 (y1 + y−1)+ α0 y0)

+h2 (β4(v) ( f4 + f−4)+ β3(v) ( f3 + f−3)+ β2(v) ( f2 + f−2)

+β1(v) ( f1 + f−1)+ β0(v) f0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(36)

where yi = y(x + ih), fi = f (x + ih, y(x + ih)), i = −4(1)3, f4 = f (x +
4h, y∗

4 ), v = ω h, ω is the frequency and h is the step length.
The characteristic equation (14) becomes

4∑
i=1

Ai (v)(s
i + s−i )+ A0(v) = 0 (37)

where

Ai (v) = αi + v2(βi (v)− ai β4(v))− v4 bi β4(v),

i = 0(1)4, α4 = a4 = 1, b4 = 0. (38)

3.4 The new predictor–corrector pair form (SEPCM)

From (34) for αi = ai , i = 0(1)m, we get:

yn+m = −
m−1∑
i=0

ai yn+i + h2
m∑

i=0
bi f (xn+i , yn+i )

yn+m = −
m−1∑
i=0

ai yn+i + h2βm(v) f (xn+m, yn+m)+ h2
m−1∑
i=0

βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭

If we call:

An = −
m−1∑
i=0

ai yn+i ,

we can write

yn+m = An + h2
m−1∑
i=0

bi f (xn+i , yn+i )

yn+m = An + h2βm(v) f (xn+m, yn+m)+ h2
m−1∑
i=0

βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭
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From this pair, a new predictor–corrector (PC) pair form, is formally defined as follows:

y∗
n+m = An + h2

m−1∑
i=0

bi f (xn+i , yn+i )

yn+m = An + h2βm(v) f (xn+m, y∗
n+m)+ h2

m−1∑
i=0

βi (v) f (xn+i , yn+i )

⎫⎪⎪⎬
⎪⎪⎭

(39)

where An = −
m−1∑
i=0

ai yn+i , |a0| + |b0| �= 0, |a0| + |β0(v)| �= 0, v = ω h, ω is the

frequency and h is the step length.
In this pair form the coefficients βi (v), of the corrector method, depend on v (where

i = 0(1)m, v = ω h, ω is the frequency and h is the step length).
We call the above method Semi-Embedded Predictor–Corrector Method (SEPCM),

in the sense that a part of the predictor method is contained in the corrector method.
If the method is symmetric then ai = am−i , bi = bm−i and βi (v) = βm−i (v), i =

0(1)�m
2 �.

From (39) for m = 8, we get the form of the symmetric semi-embedded predictor–
corrector method (SEPCM) with eight-steps:

A = − (y−4 + a3 (y3 + y−3)+ a2 (y2 + y−2)+ a1 (y1 + y−1)+ a0 y0)

y∗
4 = A + h2 (b3 ( f3 + f−3)+ b2 ( f2 + f−2)+ b1 ( f1 + f−1)+ b0 f0)

y4 = A + h2
(
β4(v) ( f4 + f−4)+ β3(v) ( f3 + f−3)

+β2(v) ( f2 + f−2)+ β1(v) ( f1 + f−1)+ β0(v) f0

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(40)

where yi = y(x + ih), fi = f (x + ih, y(x + ih)), i = −4(1)3, f4 = f (x +
4h, y∗

4 ), v = ω h, ω is the frequency and h is the step length.
The characteristic equation (14) becomes

4∑
i=1

Ai (v)(s
i + s−i )+ A0(v) = 0 (41)

where

Ai (v) = ai + v2(βi (v)− ai β4(v))− v4 bi β4(v),

i = 0(1)4, a4 = 1, b4 = 0. (42)

3.5 The new optimized symmetric semi-embedded predictor–corrector method

From (40), (31) and (26) a new optimized symmetric eight-step semi-embedded
predictor–corrector method (SEPCM) with minimal phase-lag obtained:
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A = −y−4 + 2(y3 + y−3)− 2(y2 + y−2)+ (y1 + y−1)

y∗
4 = A+h2

(
17671
12096 ( f3+ f−3)− 23622

12096 ( f2+ f−2)+ 61449
12096 ( f1+ f−1)− 50516

12096 f0

)
y4 = A + h2

(
β4(v)( f ∗

4 + f−4)+ ( 17671
12096 − 8β4(v)

)
( f3 + f−3)

+(28β4(v)− 3937
2016 )( f2 + f−2)+ ( 20483

4032 − 56β4(v)
)
( f1 + f−1)

+(70β4(v)− 12629
3024 ) f0

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(43)

where yi = y(x +ih), fi = f (x +ih, y(x +ih)), i = −4(1)3, f ∗
4 = f (x +4h, y∗

4 ),

β4(v)

= −24192(cos(v))4 − (17671v2 − 24192)(cos(v))3 + (12096 + 11811v2)(cos(v))2 − (15120 + 2109v2) cos(v)+ 409v2 + 3024

24192 v2 (cos(v)− 1)4
,

v = ω h, ω is the frequency and h is the step length.
For small values of v the following Taylor series expansions must be used:

β4(v) = 45767

725760
+ 58061

31933440
v2 + 2399921

261534873600
v4 − 602311

298896998400
v6

− 1067953

7904165068800
v8− 29376529643

5109094217170944000
v10− 3029692489

16057153253965824000
v12

− 89043304369

18801466719189073920000
v14 − 9809592400337

145184926005578028810240000
v16

+ 47323386203

30565247580121690275840000
v18,

where v = ω h, ω is the frequency and h is the step length.
The new optimized symmetric eight-step semi-embedded predictor–corrector

method (43) has an interval of periodicity (0, v2
0) where v2

0 = 0.9758918.
The local truncation error of the above method is given by:

L .T .E . =
(

12506213339

5794003353600
y(12)

n − 58061

31933440
y(10)

n ω2
)

h12 + O(h14) (44)

The new optimized symmetric eight-step semi-embedded predictor–corrector method,
has eight steps 10th algebraic order and 10th order of phase-lag.

4 Numerical results

4.1 The problems

The efficiency of the new optimized symmetric eight-step semi-embedded predictor–
corrector method will be measured through the integration of seven initial value prob-
lems with oscillating solution.
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4.1.1 Orbital problem by Stiefel and Bettis

The “almost” periodic orbital problem studied by [81] can be described by

y′′ + y = 0.001 ei x , y(0) = 1, y′(0) = 0.9995 i, y ∈ C, (45)

or equivalently by

u′′ + u = 0.001 cos(x), u(0) = 1, u′(0) = 0,
v′′ + v = 0.001 sin(x), v(0) = 0, v′(0) = 0.9995.

(46)

The theoretical solution of the problem (45) is given below:

y(x) = u(x)+ i v(x), u, v ∈ R
u(x) = cos(x)+ 0.0005 x sin(x),
v(x) = sin(x)− 0.0005 x cos(x).

The system of equations (46) has been solved for x ∈ [0, 1000π ]. Estimated fre-
quency: w = 1.

4.1.2 Nonlinear equation

y′′ = −100y + sin(y), with y(0) = 0, y′(0) = 1, t ∈ [0, 20π ].

The theoretical solution is not known, but we use y(20π) = 3.92823991 · 10−4.
Estimated frequency: w = 10.

4.1.3 Inhomogeneous equation

y′′ = −100y + 99 sin(t), with y(0) = 1, y′(0) = 11, t ∈ [0, 1000π ].

Theoretical solution: y(t) = sin(t) + sin(10 t) + cos(10 t). Estimated frequency:
w = 10.

4.1.4 Orbital problem by Franco and Palacios

The “almost” periodic orbital problem studied by [80] can be described by

y′′ + y = εeiψx , y(0) = 1, y′(0) = i, y ∈ C, (47)

or equivalently by

u′′ + u = ε cos(ψx), u(0) = 1, u′(0) = 0,
v′′ + v = ε sin(ψx), v(0) = 0, v′(0) = 1,

(48)
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where ε = 0.001 and ψ = 0.01. The theoretical solution of the problem (47) is given
below:

y(x) = u(x)+ i v(x), u, v ∈ R
u(x) = 1−ε−ψ2

1−ψ2 cos(x)+ ε
1−ψ2 cos(ψ x)

v(x) = 1−εψ−ψ2

1−ψ2 sin(x)+ ε
1−ψ2 sin(ψ x)

The system of equations (48) has been solved for x ∈ [0, 1000π ]. The estimated
frequency is w = 1.

4.1.5 Duffing equation

y′′ = −y − y3 + 0.002 cos(1.01 t), (49)

with y(0) = 0.200426728067, y′(0) = 0, t ∈ [0, 1000π ].
Theoretical solution:
y(t) = 0.200179477536 cos(1.01 t)+ 2.46946143 · 10−4 cos(3.03 t)+ 3.04014 ·

10−7 cos(5.05 t)+ 3.74 · 10−10 cos(7.07 t)+ · · ·
Estimated frequency: w = 1.

4.1.6 Two-body problem

y′′ = − y

(y2 + z2)
3
2

, z′′ = − z

(y2 + z2)
3
2

, (50)

with y(0) = 1, y′(0) = 0, z(0) = 0, z′(0) = 1, t ∈ [0, 1000π ]. Theoretical
solution: y(t) = cos(t) and z(t) = sin(t).

We used the estimation w = 1

(y2+z2)
3
4

as frequency of the problem.

4.1.7 Schrödinger equation: resonance problem

We will integrate problem (2) with l = 0 at the interval [0, 15] using the well-known
Woods-Saxon potential

V (x) = u0

1 + q
+ u1 q

(1 + q)2
, q = exp

(
x − x0

a

)
, where

u0 = −50, a = 0.6, x0 = 7 and u1 = −u0

a
(51)

and with boundary condition y(0) = 0. The potential V (x) decays more quickly than
l (l+1)

x2 , so for large x (asymptotic region) the Schrödinger equation (2) becomes

y′′(x) =
(

l(l + 1)

x2 − E

)
y(x) (52)
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The last equation has two linearly independent solutions k x jl(k x) and k x nl(k x),
where jl and nl are the spherical Bessel and Neumann functions. When x → ∞ the
solution takes the asymptotic form

y(x) ≈ A k x jl(k x)− B k x nl(k x)
≈ D[sin(k x − π l/2)+ tan(δl) cos (k x − π l/2)], (53)

where δl is called scattering phase shift and it is given by the following expression:

tan (δl) = y(xi ) S(xi+1)− y(xi+1) S(xi )

y(xi+1)C(xi )− y(xi )C(xi+1)
, (54)

where S(x) = k x jl(k x), C(x) = k x nl(k x) and xi < xi+1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the accurate
value of which is π/2 for the above problem. We will use for the energy the value:
E = 989.701916. As for the frequency ω we will use the suggestion of Ixaru and
Rizea [77]:

ω =
{√

E + 50, x ∈ [0, 6.5]√
E, x ∈ [6.5, 15] (55)

4.2 The methods

We have used several multistep methods for the integration of the seven test problems.
These are:

– The new optimized symmetric eight-step semi-embedded predictor–corrector
method with 10th algebraic order and minimal phase-lag(43) (New SEPCM)

– The symmetric 10-step method of Quinlan–Tremaine of order ten [78] (Q–T 10
step)

– The symmetric 8-step method of Quinlan–Tremaine of order eight [78] (Q–T 8
step)

– The 8-step, predictor–corrector method Störmer–Cowell of order eight [83] (S–C
8 step)

– The symmetric 6-step method of Jenkins of order six [79] (Jenkins 8 step)
– The 2-step, 3-stage exponentially-fitted predictor–corrector method of Simos and

Williams of algebraic order six [69] (W–S EF1)
– The 3-step, 3-stage exponentially-fitted predictor–corrector method (EF2) of Psi-

hoyios and Simos of algebraic order five [64] (P-S EF2)
– The 4-step predictor–corrector method Adams-Bashforth—Moulton of order four

(PC ABM 4 step)
– The 4-step predictor–corrector method Milne–Simpson of order four. (PC M–S)
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Fig. 1 Efficiency for the orbital problem by Stiefel and Bettis
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Fig. 2 Efficiency for the nonlinear equation

4.3 Comparison

We present the accuracy of the tested methods expressed by the − log10 (max. error
over interval) or − log10(error at the end point), depending on whether we know the
theoretical solution or not, versus the CPU time.

In Table 1 we see the comparison of the new optimized symmetric eight-step semi-
embedded predictor–corrector method with 10th algebraic order and minimal phase-
lag (43) and the multistep symmetric method of Quinlan–Tremaine [78] with eight
steps and eighth algebraic order for all the problems solved.
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Fig. 3 Efficiency for the inhomogeneous equation
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Fig. 4 Efficiency for the orbital problem by Franco and Palacios

In Fig. 1 we see the results for the Stiefel–Bettis almost periodic problem, in Fig. 2
the results for the Nonlinear equation, in Fig. 3 the results for the Inhomogeneous
equation, in Fig. 4 the results for the Franco–Palacios almost periodic problem, in
Fig. 5 the results for the Duffing equation, in Fig. 6 the results for the Two-body prob-
lem for eccentricity e = 0.4, in Fig. 7 the results for the resonance problem for energy
E = 989.701916 and in Fig. 8 we see the results for the resonance problem for energy
E = 341.495874.
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Fig. 5 Efficiency for the duffing equation
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Fig. 6 Efficiency for the two-body problem using eccentricity e = 0.4

Among all the methods used, the new optimized symmetric eight-step semi-
embedded predictor–corrector method with 10th algebraic order and minimal phase-
lag was the most efficient.

The difference from the multistep symmetric method of Quinlan–Tremaine [78]
with ten steps and tenth algebraic order was at least 0.5 decimal digits better for all the
problems. The difference from the multistep symmetric method of Quinlan–Tremaine
[78] with eight steps and eighth algebraic order was at least 1 decimal digit better and
higher from the other compared methods for all the problems.
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Fig. 7 Efficiency for the resonance problem using E = 989.701916
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Fig. 8 Efficiency for the resonance problem using E = 341.495874

The interval of periodicity of the new optimized symmetric eight-step semi-
embedded predictor–corrector method with 10th algebraic order and minimal phase-
lag is about two times larger than the multistep symmetric method of Quinlan–
Tremaine with eight steps and eighth algebraic order.

The new optimized symmetric eight-step semi-embedded predictor–corrector
method with 10th algebraic order and minimal phase-lag can achieve the required
accuracy with a stepsize two times bigger than the multistep symmetric method of
Quinlan–Tremaine with eight steps and eighth algebraic order, for all the problems
solved.
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5 Conclusions

We have constructed a new predictor–corrector (PC) pair form (SEPCM) (39) for the
numerical integration of second-order initial-value problems (1). From the form (39)
we have developed a new optimized symmetric eight-step semi-embedded predictor–
corrector method with 10th algebraic order and minimal phase-lag (43).

The new predictor–corrector pair form (SEPCM) (39) has the advantage that reduces

the computational expense if the additions on the factor An =
m−1∑
i=0

ai yn+i , are done

twice.
We have applied the new optimized symmetric eight-step semi-embedded predictor–

corrector method with 10th algebraic order and minimal phase-lag (43) along with a
group of recently developed methods from the literature to the Schrödinger equa-
tion and related orbital problems and other methods from the general literature. We
concluded that the new optimized symmetric eight-step semi-embedded predictor–
corrector method with 10th algebraic order and minimal phase-lag (43) are highly
efficient compared to other optimized methods which also reveals the importance of
phase-lag when solving ordinary differential equations with oscillatory solutions such
as orbital problems.
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